Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Med (Lausanne) ; 7: 556818, 2020.
Article in English | MEDLINE | ID: covidwho-961637

ABSTRACT

Background: Coronavirus disease (COVID-19) has swept around the globe and led to a worldwide catastrophe. Studies examining the disease progression of patients with non-severe disease on admission are scarce but of profound importance in the early identification of patients at a high risk of deterioration. Objectives: To elucidate the differences in clinical characteristics between patients with progressive and non-progressive COVID-19 and to determine the risk factors for disease progression. Study design: Clinical data of 365 patients with non-severe COVID-19 from 1 January 2020 to 18 March 2020 were retrospectively collected. Patients were stratified into progressive and non-progressive disease groups. Univariate and multivariate logistic regression analyses were performed to determine the independent risk factors for disease progression. Results: Compared with patients with non-progressive disease, those who progressed to severe COVID-19 were older and had significantly decreased lymphocyte and eosinophil counts; increased neutrophil and platelet counts; lower albumin levels; higher levels of lactate dehydrogenase, C-reactive protein (CRP), creatinine, creatinine kinase, and urea nitrogen; and longer prothrombin times. Hypertension, fever, fatigue, anorexia, bacterial coinfection, bilateral patchy shadowing, antibiotic and corticosteroid administration, and oxygen support had a significantly higher incidence among patients with progressive disease. A significantly longer duration of hospital stay was also observed in patients with progressive disease. Bilateral patchy shadowing (OR = 4.82, 95% CI: 1.33-17.50; P = 0.017) and elevated levels of creatinine (OR =6.24, 95% CI: 1.42-27.40; P = 0.015), and CRP (OR = 7.28, 95% CI: 2.56-20.74; P < 0.001) were independent predictors for disease progression. Conclusion: The clinical characteristics of patients with progressive and non-progressive COVID-19 were significantly different. Bilateral patchy shadowing and increased levels of creatinine, and CRP were independent predictors of disease progression.

2.
Front Bioeng Biotechnol ; 8: 898, 2020.
Article in English | MEDLINE | ID: covidwho-732918

ABSTRACT

OBJECTIVES: Coronavirus disease 2019 (COVID-19) is sweeping the globe and has resulted in infections in millions of people. Patients with COVID-19 face a high fatality risk once symptoms worsen; therefore, early identification of severely ill patients can enable early intervention, prevent disease progression, and help reduce mortality. This study aims to develop an artificial intelligence-assisted tool using computed tomography (CT) imaging to predict disease severity and further estimate the risk of developing severe disease in patients suffering from COVID-19. MATERIALS AND METHODS: Initial CT images of 408 confirmed COVID-19 patients were retrospectively collected between January 1, 2020 and March 18, 2020 from hospitals in Honghu and Nanchang. The data of 303 patients in the People's Hospital of Honghu were assigned as the training data, and those of 105 patients in The First Affiliated Hospital of Nanchang University were assigned as the test dataset. A deep learning based-model using multiple instance learning and residual convolutional neural network (ResNet34) was developed and validated. The discrimination ability and prediction accuracy of the model were evaluated using the receiver operating characteristic curve and confusion matrix, respectively. RESULTS: The deep learning-based model had an area under the curve (AUC) of 0.987 (95% confidence interval [CI]: 0.968-1.00) and an accuracy of 97.4% in the training set, whereas it had an AUC of 0.892 (0.828-0.955) and an accuracy of 81.9% in the test set. In the subgroup analysis of patients who had non-severe COVID-19 on admission, the model achieved AUCs of 0.955 (0.884-1.00) and 0.923 (0.864-0.983) and accuracies of 97.0 and 81.6% in the Honghu and Nanchang subgroups, respectively. CONCLUSION: Our deep learning-based model can accurately predict disease severity as well as disease progression in COVID-19 patients using CT imaging, offering promise for guiding clinical treatment.

3.
EBioMedicine ; 57: 102880, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-633891

ABSTRACT

BACKGROUND: Information regarding risk factors associated with severe coronavirus disease (COVID-19) is limited. This study aimed to develop a model for predicting COVID-19 severity. METHODS: Overall, 690 patients with confirmed COVID-19 were recruited between 1 January and 18 March 2020 from hospitals in Honghu and Nanchang; finally, 442 patients were assessed. Data were categorised into the training and test sets to develop and validate the model, respectively. FINDINGS: A predictive HNC-LL (Hypertension, Neutrophil count, C-reactive protein, Lymphocyte count, Lactate dehydrogenase) score was established using multivariate logistic regression analysis. The HNC-LL score accurately predicted disease severity in the Honghu training cohort (area under the curve [AUC]=0.861, 95% confidence interval [CI]: 0.800-0.922; P<0.001); Honghu internal validation cohort (AUC=0.871, 95% CI: 0.769-0.972; P<0.001); and Nanchang external validation cohort (AUC=0.826, 95% CI: 0.746-0.907; P<0.001) and outperformed other models, including CURB-65 (confusion, uraemia, respiratory rate, BP, age ≥65 years) score model, MuLBSTA (multilobular infiltration, hypo-lymphocytosis, bacterial coinfection, smoking history, hypertension, and age) score model, and neutrophil-to-lymphocyte ratio model. The clinical significance of HNC-LL in accurately predicting the risk of future development of severe COVID-19 was confirmed. INTERPRETATION: We developed an accurate tool for predicting disease severity among COVID-19 patients. This model can potentially be used to identify patients at risks of developing severe disease in the early stage and therefore guide treatment decisions. FUNDING: This work was supported by the National Nature Science Foundation of China (grant no. 81972897) and Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2015).


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus Infections/pathology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/pathology , Severity of Illness Index , Betacoronavirus , C-Reactive Protein/analysis , COVID-19 , Cytokine Release Syndrome/pathology , Female , Humans , Hypertension/pathology , L-Lactate Dehydrogenase/analysis , Lymphocyte Count , Male , Middle Aged , Neutrophils/cytology , Pandemics , Prognosis , Retrospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL